

Строительные Информационные Технологии И Системы

ООО «Ситис» 620028, Екатеринбург, ул. Долорес Ибаррури, 2, тел./факс (343) 310-00-99, www.sitis.ru support@sitis.ru

3720-01-010-РП-1

СИТИС:БимСтудия-Пилот 0.10

Руководство пользователя Редакция 1 19.10.2020

АННОТАЦИЯ

Данный документ является руководством пользователя программы «СИТИС:БимСтудия-Пилот».

В документе приведено описание интерфейса, функций и возможностей программы. Данное руководство будет действовать на новые версии программы от 0.10 и выше, пока ООО «СИТИС» не опубликует новое руководство.

Обозначение "Пилот" и номер версии "0" обозначают, что данная версия программы является опытно-экспериментальной и пока не предназначена для широкого практического применения, поскольку содержит только краткую документацию, и некоторые функции интерфейса не доработаны для удобства пользователя.

АВТОРСКОЕ ПРАВО

© ООО «СИТИС», 2019-2020 гг.

ООО «СИТИС» предоставляет право бесплатных печати, копирования, тиражирования и распространения этого документа в сети Интернет и локальных и корпоративных сетях обмена электронной информацией. Не допускается взимание платы за предоставление доступа к этому документу, за его копирование и распечатывание. Не разрешается публикация этого документа любым другим способом без письменного согласия ООО «СИТИС».

Оглавление

1. 06	бщие сведения	4
1.1	Назначение программы	4
1.2	Лицензирование и активация программы	4
2. Te	рмины и определения	
		-
3. И⊦	нтерфейс программы	6
3.1	Структура главного окна	6
3.2	Заголовок окна	6
3.3	Меню	6
3.4	Дерево объектов	1
3.5		<i>،</i> / م
3.0	Окно просмотра	0
4.Ци	ифровые информационные модели	9
4.1	Модели IFC	9
4.2	Модели FSIM	
4.3	Модели ВSM	
4.4	модели Бимдамп	
4.5	Модели ГСО	10
4.0 17	Модели СМІ	∠ا 12
4.7	модели быс	١٢
5. Ce	зодные модели	13
5.1	Федерации	
5.2	Метамодели	
5.3	Расписания	14
6. Φy	ункции взаимодействия	16
6.1	Файлы сообщений BCF	16
6.2	Экспорт анимированных моделей	16
6.3	Экспорт моделей в PDF 3D	16
7. Φ	ункции обработки моделей	17
7.1	Маппинг	17
8 Ka		21
0. Na	імеры и локаторы.	Z I
9. Би	имДамп	23
9.1	Общая информация	23
9.2	Параметрические модели:	
9.3	Штриховки	
9.4	шкалы и палитры	25
10.Xp	ранилища	27
10.1	Работа с хранилищами	27
11.Пr	оосмотр с конвертацией	
11.1	Описание работы	
40.0		~ ~ ~
12.11	лимеры	
13.Cv	истемные требования	32

1. Общие сведения

1.1 Назначение программы

1.1.1 БимСтудия – программа для просмотра и федерирования цифровых информационных моделей зданий и сооружений, цифровых моделей местности и цифровых расчетных моделей в различных открытых форматах, для осуществления различных преобразований файлов в разных форматах, и для обработки и преобразования информации, содержащейся в моделях.

1.2 Лицензирование и активация программы

- 1.2.1 ООО Ситис предоставляет всем пользователям бесплатную лицензию на использование программы сроком 1 год.
- 1.2.2 Активация лицензии осуществляется автоматически при первом запуске программы путем автоматического запроса на сервер лицензирования ООО Ситис.
- 1.2.3 Активированная программа "привязывается" к компьютеру, на котором была осуществлена активация и не сможет запускаться на других устройствах. Для работы на других компьютерах нужно установить на них дистрибутив программы и осуществить новую активацию лицензии.
- 1.2.4 После окончания срока действующей лицензии, лицензия может быть продлена на новый срок.
- 1.2.5 ООО Ситис предоставляет ограниченные по времени лицензии на свои бесплатные программные продукты для обеспечения распространения новых актуальных версий программ и вывода из использования устаревших версий программных продуктов.

2. Термины и определения

- 2.1.1 Модель BIM информационная модель объекта строительства трёхмерная модель здания, либо другого строительного объекта, в которой каждому элементу модели можно присвоить дополнительные атрибуты.
- 2.1.2 Модель IFC ВІМ модель в формате данных с открытой спецификацией IFC.
- 2.1.3 Модель FSIM модель проекта программы комплекса СИТИС: Пиротек 4.
- 2.1.4 Федерирование моделей одновременный просмотр нескольких моделей.
- 2.1.5 Контейнер данных папка или файл архива, содержащие данные для какой-либо прикладной задачи в виде папок категорий данных, в которых содержатся папки и файлы данных. Структура категорий данных контейнера определяется по расширению файла контейнера или по суффиксу имени папки контейнера, и/или в файле схемы контейнера.
- 2.1.6 Контейнер проекта контейнер данных, в котором содержится файл проекта (как правило в категории PRJ) и данные проекта в соответствующих категориях.
- 2.1.7 ВІМ-контейнер контейнер проекта с необходимыми для работы приложения данными. Контейнер имеет суффикс папки «bimc_» и расширение архива «bimczip» В контейнере могут быть несколько категорий: prj, ifc, smd, bcf, img, pdf и т.д.
- 2.1.8 Метамодель объект, соответствующий наиболее позднему файлу модели IFC, которая выбирается по заданной маске из файлов в заданной папке.
- 2.1.9 Расписание объект, состоящий из групп элементов, для которых задан период отображения в окне 3D с таймлайном (шкалой времени).
- 2.1.10 Временная группа объект, для которого задан период отображения в окне 3D с таймлайном. Состоит из ссылок на объекты IFC. Из групп состоят расписания.
- 2.1.11 Трасса набор точек во времени (keyframes / ключевые кадры), в которых заданы параметры в этот момент времени смещение положения, смещение угла поворота, дополнительная прозрачность и дополнительный цвет. Значения параметров между ключевыми кадрами определяются интерполяцией. Трасса есть у каждой временной группы. Все параметры ключевых кадров являются обязательными.
- 2.1.12 Модель BSM конечно-элементная модель для различных расчетов зданий и сооружений, заданная текстовым файлом, который содержит последовательность блоков инструкций.
- 2.1.13 Формат BFC это открытый формат, официально поддерживаемый альянсом buildingSMART. BCF используется во многих приложениях конструктивного и инженерного проектирования, а также в программах проверки моделей, позволяя добавлять комментарии, снимки экрана, расположение камер и 3D-сечений в модели IFC.
- 2.1.14 Коллаборация объект, позволяющий импортировать, экспортировать, смотреть структуру и читать параметры файла формата BCF.
- 2.1.15 IFC дамп текстовый файл на основе формата json5, содержащий в себе информацию о моделях IFC и/или федерациях.
- 2.1.16 БимДамп файл на основе формата json5, являющийся прикладным форматом обмена объектно-ориентированными данными об объектах строительства и застроенных земельных участках.
- 2.1.17 БимМаппинг операции обработки и изменения файлов IFC и IFC дампа.

3. Интерфейс программы

3.1 Структура главного окна

3.1.1 Главное окно приложения имеет следующую структуру:

- 3.1.2.1 1. Заголовок окна здесь отображаются информационные данные о программе см. п. 3.2
- 3.1.2.2 2. Меню с помощью меню осуществляется работа с приложением см. п. 3.3
- 3.1.2.3 3. Дерево объектов с помощью дерева объектов осуществляется работа в программе см. п. 3.4
- 3.1.2.4 4. Таблица свойств с помощью таблицы свойств осуществляется редактирования свойств выбранного объекта см. п. 3.5
- 3.1.2.5 5. Окно просмотра окно для просмотра содержимого элементов узлов дерева объекта см. п. 3.6.

3.2 Заголовок окна

- 3.2.1 В заголовке окна программы отображаются информационные данные о программе: наименование и версия программы. Например:
- 3.2.2 ВІМ СИТИС:BIMstudio-Pilot [ru] 0.10: Контейнер проекта 01 bimdump model.bimczip

3.3 Меню

3.1.2

- 3.3.1 С помощью меню осуществляется работы с программой и настройками программы. Меню состоит из следующих пунктов:
 - Проект

- Данные
- BIMStudio
- Конвейеры
- Панель отрисовки
- Настройки
- Справка
- 3.3.2 Пункт меню «Справка» предназначен для получения информации о программе. Состоит из следующих подпунктов:
 - О программе открывает окно с информацией о программе
 - Документация открывает документацию

3.4 Дерево объектов

3.4.1 В левой части программы располагает дерево объектов. Работа в программе осуществляется при помощи контекстного меню в дереве объектов:

3.5 Таблица свойств

3.4.2

3.5.1 Для некоторых узлов и элементов узлов, находящихся внутри узла, есть таблица свойств. Для того чтобы отобразилась таблица свойств для нужно узла и элемента узла, необходимо щелкнуть по нему левой клавишей мыши. Таблица свойств предназначена для отображения и редактирования свойств выбранного объекта.

Свойство	Значение
Тип объекта	Me3D модель
Имя	EBPV\$Me3D
Идентификатор	88956
Комментарий	
Параметры	{"Source":["","VCLC",0,"3
Раскладка интер	
Активна	
Тип	
Метрика	{"GM":302,"PM":13,"GA":[
Идентификатор	
Уровень детализ	2

3.5.2

3.6 Окно просмотра

3.6.1 В окне просмотра отображается содержимое элементов узла. Для того чтобы просмотреть содержимое элемента узла нужно щелкнуть по нему двойным кликом мыши.

3.6.2

4. Цифровые информационные модели

4.1 Модели IFC

4.1.1 Для работы с моделями BIM необходимо в главном меню выбрать пункт «BIM Studio» - «Конвертировать из файлов», затем выбрать в поле «Исходные файлы» один или несколько файлов формата IFC, IFCZIP при помощи кнопки «Обзор...», далее необходимо выбрать в поле «Папка для сохранения» при помощи кнопки «Обзор...» папку, в которую будут сохранены конвертированные файлы моделей. После необходимо выбрать выходной формат в соответствующем поле (IFC / IFCZIP) и нажать на кнопку «Конвертировать» для запуска процесса отображения и конвертации. Если папка для сохранения не была выбрана, будет произведен импорт моделей без конвертации.

Параметры конверта Исходные файлы: Папка для сохранения: Выходной формат:	іции іfc Конвертировать Отмена	 ✓ ✓ ✓

- 4.1.2
- 4.1.3 После нажатия кнопки «Конвертировать» начнется импорт и конвертирование объектов. По окончании импорта в дереве объектов появятся новые модели, название которых совпадают с именами выбранных файлов, а в области внутри моделей поместятся все импортированные объекты. Также в разделе дерева «Федерации» будет создана одна федерация с названием «Федерирование». Далее начнется процесс конвертации. Все модели будут конвертированы в выбранный формат и сохранены в выбранную папку с именами в формате «ИмяФайлаМодели_ГГГГ.ММ.ДД_ЧЧ.ММ.СС.формат».
- 4.1.4 Модель IFC также можно импортировать из файла IFC дампа.
- 4.1.5 Виды модели.
- 4.1.6 Для работы с моделью IFC предусмотрены виды модели IFC. Дерево объектов модели IFC имеет следующий вид:
 - 4.1.6.1 Модель
 - 4.1.6.1.1 Основной вид
 - 4.1.6.1.2 Вид1
 - 4.1.6.1.3 Вид2
 - 4.1.6.1.4 ...
- 4.1.7 При выборе вида (двойной клик) в 3D окне отображаются только объекты выбранного вида.
- 4.1.8 Основной вид объекты с пространственным представлением, за исключением указанных в других видах.
- 4.1.9 Для создания вида необходимо нажать правой кнопкой мыши на модель IFC и выбрать пункт «Создать вид», в появившемся окне задать параметры вида и нажать ОК.
- 4.1.10 Для добавления объекта в вид существует 2 способа добавления:
 - 4.1.10.1 Копирование объекта. Необходимо нажать правой кнопкой мыши на объект и выбрать пункт «Копировать в вид», в появившемся окне выбрать необходимый вид и нажать ОК. При копировании объекта он продолжает отображаться при просмотре основного вида.

- 4.1.10.2 Перемещение объекта. Необходимо нажать правой кнопкой мыши на объект и выбрать пункт «Переместить в вид», в появившемся окне выбрать необходимый вид и нажать ОК. При перемещении объекта он перестает отображаться при просмотре основного вида.
- 4.1.11 В дереве объектов скопированные объекты выделяются синим цветом.

4.2 Модели FSIM

- 4.2.1 FSIM файл проекта программного комплекса СИТИС:Пиротек 4, содержащий модель, описывающую пути эвакуации и пожарную нагрузку здания, для моделирования динамики опасных факторов пожара, эвакуации людей и определения расчетной величины пожарного риска.
- 4.2.2 Работа с моделями FSIM аналогична ранее описанной работе с моделями IFC необходимо в главном меню выбрать пункт «BIM Studio» - «Конвертировать из файлов», затем выбрать в поле «Исходные файлы» один или несколько файлов формата FSIM при помощи кнопки «Обзор...», далее необходимо выбрать в поле «Папка для сохранения» при помощи кнопки «Обзор...» папку, в которую будут сохранены конвертированные файлы моделей.

4.3 Модели BSM

- 4.3.1 Для того, чтобы создать модель BSM, необходимо в шапке приложения выбрать «Данные» «Добавить модель BSM».
- 4.3.2 После этого необходимо в таблице свойств выбрать файл с последовательностью блоков инструкций в поле «Исходный файл». Файл будет помещен в контейнер проекта в категорию «bsm».
- 4.3.3 Чтобы добавить модель BSM в федерацию, необходимо нажать на неё правой кнопкой мыши, выбрать пункт «Добавить в федерацию» и в появившемся окне выбрать имя необходимого объекта федерации.

4.4 Модели БимДамп

4.4.1 Для того, чтобы создать модель БимДамп, необходимо в шапке приложения выбрать «Bim Studio» → «Импортировать из BIM дампа» и выбрать необходимый уровень детализации.

Проект Данные	BIM Studi	Панель отрисовки	Спр	авка	Настройки [WORK@] []
	Коне	ертировать из файлов ортировать из IFC дамг	na		
Параметры	Имп	ортировать из BIM дам	na I		Первый уровень детализации
Документац Федерации	BimN	apping	-		Все уровни детализации
Модели					Выбрать уровень детализации
Федерации Модели					Выбрать уровень детализации

4.4.2

4.4.3 После этого в появившемся окне выбора файла необходимо выбрать файл BIM дампа и нажать «OK». В случае успешного импорта в дереве объектов будет создана модель Бим-Дамп. Ее можно просмотреть в 3d окне (двойной клик), а также экспортировать в формат IFC (правая кнопка мыши – «Экспортировать в IFC»).

4.5 Модели IFCD

- 4.5.1 IFCD IFC дамп файл в формате json, содержащей в себе информацию о моделях IFC и/или федерациях. Текстовый файл имеет расширение «.ifcd», текстовый файл, упакованный в zip архив – «.ifcdzip».
- 4.5.2 Текстовый файл имеет следующую структуру:

{ Comment : {...}, // блок с данными о файле

// далее идут блоки с данными о моделях, входящих в состав федерации. При отсутствии федерации – описывается одна модель

```
// далее идут блоки с данными об объектах, входящих в состав модели
guid_объекта_1 : {
Parent : "...", // guid родительского объекта
TypeO: "...", // тип объекта ifc
Params: [...], // массив общих параметров объекта
TypeR: [...], // массив типов представлений объекта
```

Geometry: [...], // массив параметров представлений объекта, достаточный для построения геометрии

Structure: [...], // массив параметров представлений объектов, достаточный для обратной конвертации в формат ifc

Style : […] // массив визуальных параметров представлений объектов
},
guid_объекта_2 : {…},
...
guid объекта К : {...},

//далее идут блоки с данными о ссылочных объектах, входящих в состав объектов из модели. Их определение начинается с символа «@», а их использование внутри данных объектов – с символа «#»

@номер_ссылочного_объекта_1: {

```
}
}
uid_модели_2 : {...},
...
uid_модели_N : {...}
}
```

- 4.5.3 Модели IFC и федерации можно экспортировать в виде дампа IFC. Для этого необходимо нажать на модель или федерацию правой кнопкой мыши, найти пункт «IFC дамп», в нем выбрать один из подпунктов:
 - 4.5.3.1 Краткий экспорт. В данном случае экспортируется всё кроме параметров типа «Structure» (которые позволяют вернуться в формат ifc)
 - 4.5.3.2 Полный экспорт. Экспортируется всё.
 - 4.5.3.3 Краткий экспорт в zip. То же самое, что краткий экспорт, но результат упаковывается в zip архив.

- 4.5.3.4 Полный экспорт в zip. То же самое, что Полный экспорт, но результат упаковывается в zip архив.
- 4.5.4 Также можно импортировать IFC дамп, при импорте из него получится модель IFC. Для этого необходимо выбрать в шапке пункт меню «BIM Studio» → «Импортировать из IFC дампа», выбрать файл дампа и нажать «OK».

Проект Данные ВІ	M Studio) Панель отрисовки С	прав
	Конвертировать из файлов	
	Импортировать из IFC дампа	
📑 Окна	Импортировать из ВІМ дампа	•
ДокументаL	BimMapping	•
Федерации		
Документа.		>

4.5.5

4.6 Модели DXF

- 4.6.1 Модели DXF 'то модели, прочитанные из файлов в формате Dxf (.dxf) открытый формат файлов для обмена графической информацией между приложениями САПР.
- 4.6.2 Для прочтения таких файлов надо выбрать в шапке программы пункт "BIMStudio", далее "Импортировать из DXF файла". Далее выбрать файл, и в результате будет создана модель DXF.
- 4.6.3 Открывается в 3D окне.
 - 4.6.3.1 Двойной клик
 - 4.6.3.2 Щелкнуть правой мышкой на модель в дереве, выбрать Показать
- 4.6.4 Модель DXF можно экспортировать в БимДамп:
 - 4.6.4.1 Щелкнуть правой мышкой в дереве, выбрать Экспорт -> BIM дамп

4.7 Модели GML

- 4.7.1 Модели GML это модели, прочитанные из файлов в формате CityGml (.gml) и CityJson (.json) файлов цифровых моделей местности.
- 4.7.2 Для прочтения таких файлов надо выбрать в шапке программы пункт "BIMStudio", далее "Импортировать из CityGml файла" или "Импортировать из CityJson файла". Далее выбрать файл, и в результате будет создана модель GML.
 - 4.7.2.1 Открывается в 3D окне.
 - 4.7.2.2 Двойной клик
- 4.7.3 Щелкнуть правой мышкой на модель в дереве, выбрать Показать
 - 4.7.3.1 Модель GML можно экспортировать в БимДамп:
 - 4.7.3.2 Щелкнуть правой мышкой в дереве, выбрать Экспорт -> ВІМ дамп

5. Сводные модели

5.1 Федерации

- 5.1.1 Для того, чтобы создать федерацию, необходимо в шапке приложения выбрать «Данные» «Добавить федерацию», или найти в дереве объектов «Федерации», нажать правую кнопку мыши и выбрать пункт «Добавить федерацию».
- 5.1.2 Федерация по умолчанию пустая. Для выбора федерируемых моделей необходимо выбрать объект федерации в дереве, найти в таблице свойств свойство «Федерируемые модели», нажать на кнопку «…», выставить галочки напротив параметра «Активность» у необходимых моделей применить изменения. После этого объект дерева будет обновлен и перерисован в 3D окне. Таким же образом можно изменять цвет и прозрачность объектов каждой модели. Для этого необходимо изменить параметры «Цвет» (в формате RGB), «Прозрачность» (значение от 0 до 100) и выставить галочку пользовательского цветового режима.
- 5.1.3 В федерациях участвуют IFC модели, BSM модели и расписания.
- 5.1.4 Если выбрать в дереве объектов IFC модель или расписание, нажать на неё правой кнопкой мыши, выбрать пункт «Создать федерацию», то будет создана федерация с выбранной моделью в основе.
- 5.1.5 Для добавления объекта федерацию необходимо выбрать в дереве объектов нужный объект, нажать на него правой кнопкой мыши, выбрать пункт «Добавить в федерацию» и в появившемся окне выбрать имя необходимого объекта федерации.
- 5.1.6 Случаи, когда в федерации участвуют IFC модели или расписания с одинаковыми объектами, являются некорректными. В таком случае в 3D окне будет отображен объект, который находится в последнем содержащем его расписании (находящийся ниже в дереве объектов). При отсутствии объекта в расписаниях будет выбрана последняя IFC модель, содержащая объект.
- 5.1.7 При выборе пользовательского цветового режима объекты из соответствующего расписания будут стилизованы в выбранный цвет и выбранную прозрачность. При отмене пользовательского режима цвета объекты будут окрашены так, как это задано в расписании.

5.2 Метамодели

- 5.2.1 Для того, чтобы создать метамодель, необходимо в шапке приложения выбрать «Данные» «Добавить метамодель».
- 5.2.2 Метамодель по умолчанию пустая.
- 5.2.3 Для её заполнения необходимо выбрать папку с моделями (Таблица свойств Папка с моделями). После необходимо указать маску (Таблица свойств Маска).
- 5.2.4 Маска это строка с регулярным выражением. Она является префиксом имени необходимого файла.
- 5.2.5 Рекомендуемый ресурс с описанием возможностей использования регулярных выражений: <u>http://proglang.su/java/regular-expressions</u>
- 5.2.6 Ресурс для работы с регулярными выражениями онлайн: <u>https://regex101.com/</u>
- 5.2.7 Примеры работы с маской:
 - 5.2.7.1 В папке лежат два файла 01-Модель.ifc, 01-Модель-2.ifc. Второй файл был изменен позднее первого. Пусть строка с маской имеет значение «01». Под эту маску попадают оба файла, но будет выбран второй, т.к. он изменен позднее первого.
 - 5.2.7.2 В папке лежат три файла A21_model_1.ifc, 093248732_ A21_model_1.ifc, 093248732_A21_model_2.ifc. Третий файл изменен позднее всех. Строка с маской имеет значение «[\d]*_A21». Под эту маску попадают 2 и 3 файл, для работы будет выбран 3й, т.к. он изменен позже.
- 5.2.8 После того, как будет задана маска и папка с моделями, необходимо нажать на объект метамодели в дереве объектов правой кнопкой мыши и выбрать пункт меню «Обновить модель». После этого будет найден самый поздний файл модели импортируется в дереве объектов,

либо если модель уже есть в дереве, то она будет выбрана (с проверкой даты файла в исходной папке). Модель будет визуализирована в 3D окне, а в свойстве «Текущая модель» таблицы свойств отобразится выбранной по маске модели.

5.3 Расписания

- 5.3.1 Расписания являются инструментом создания 4D-моделей из одной или нескольких трехмерных 3D-моделей.
- 5.3.2 В Расписании задается время отображения какой-либо 3D модели или её отдельной части, а также смещение отображаемой модели относительно её начального положения.
- 5.3.3 Для того, чтобы создать расписание, необходимо в шапке приложения выбрать «Данные» «Добавить расписание», или найти в дереве объектов «Расписания», нажать правую кнопку мыши и выбрать пункт «Добавить расписание».
- 5.3.4 Для создания и добавления временных групп в расписание необходимо нажать правой кнопкой мыши на расписание в дереве объектов и выбрать пункт «Добавить временную группу». В появившемся окне необходимо выделить все объекты, которые необходимо добавить в группу. После нажатия на кнопку «ОК» группа будет добавлена в дерево объектов.
- 5.3.5 После этого в таблице свойств у группы можно задать время начала и конца периода, трассу и режим наложения цвета.
- 5.3.6 Трасса json строка. Пример трассы:

```
{

"Ключевой кадр 1": "00 00:00:00.00,0 0 -10,0 45 0,255 255 255,0,1;",

"Ключевой кадр 2": "00 00:00:05.00,0 0 -5,0 25 0,227 120 0,0,1;",

"Ключевой кадр 3": "00 00:00:07.00,0 0 0,0 0 0,0 0 0,0,0;",

"Ключевой кадр 4": "00 00:00:10.00,0 0 0,0 0 0,200 0 0,0,1;"

}
```

- 5.3.7 Трасса состоит из набора пар <строка, строка>, в которой ключ идентификатор ключевого кадра, а значение значения параметров ключевого кадра. Идентификатор ключевого кадра не несет никакого значения, он отображается в окне редактирования ключевых кадров и сделан для удобства восприятия. Значения параметров разделены запятой. Можно задать параметры 10-ти ключевых кадров. Порядок параметров важен:
 - 5.3.7.1 Время ключевого кадра в формате «дд чч:мм:сс.мс».
 - 5.3.7.2 Величины сдвига по осям x, y, z в формате «dx dy dz».
 - 5.3.7.3 Величины сдвига угла вокруг каждой из осей в формате «dx dy dz».
 - 5.3.7.4 Величины компонент дополнительного цвета в формате «r g b» в интервале [0, 255]. Задают дополнительный цвет объекта. Итоговый цвет объекта определяется исходным цветом, дополнительным цветом и режимом его наложения
 - 5.3.7.5 Дополнительная прозрачность объекта вещественное число в интервале [0, 1]. Задает дополнительный коэффициент прозрачности. Итоговая_прозрачность = Коэффициент * прозрачность_объекта. Разделитель дробной части точка.
 - 5.3.7.6 Активность ключевого кадра значение 0 или 1 при 1 ключевой кадр участвует в интерполяции, при 0 не участвует, т.е. его параметры ни на что не влияют. По умолчанию выставлено значение 0.
- 5.3.8 Все параметры ключевых кадров обязательны.
- 5.3.9 Панель ключевых кадров:

Редактор Текст		
Ключевой кадр 1	00 00:00:00.00,0 10 20,0 0 90,255 0 255,100,1	
Ключевой кадр 2	00 00:00:01.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 3	00 00:00:02.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 4	00 00:00:03.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 5	00 00:00:04.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 6	00 00:00:05.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 7	00 00:00:06.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 8	00 00:00:07.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 9	00 00:00:08.00,0 0 0,0 0 0,0 0 0,0,0;	
Ключевой кадр 10	00 00:00: 10.00,0 0 0,0 0 0,0 0 0,0,1;	
?	ОК Отмена П	Применить

5.3.10

5.3.11 Панель редактирования ключевого кадра:

🛓 Редактирование: H	Ключевой кадр 1				×
Время	Сдвиг	Сдвиг углов	Цвет	Прозрачно	Активность
1 00 00:00:00.00	0 10 20	0 0 90	255 0 255	100	1
1 00 00:00:00.00	0 10 20	0 0 90	255 0 255	100	1 Ірименить

5.3.12

- 5.3.13 Режимы наложения цвета:
 - 5.3.13.1 Нормальный исходный цвет заменяется дополнительным.
 - 5.3.13.2 Добавление компоненты исходного цвета складываются с компонентами дополнительного. Все значения больше 255 обрезаются до 255.
 - 5.3.13.3 Вычитание из компонент исходного цвета вычитаются компоненты дополнительного. Все значения меньше 0 обрезаются до 0.
- 5.3.14 Режим наложения задается один для всей трассы.

6. Функции взаимодействия

6.1 Файлы сообщений ВСГ

- 6.1.1 Работа с bcf происходит в разделе дерева объектов «Коллабы». Для создания новой коллабы необходимо найти объект «Коллабы», нажать на него правой кнопкой мыши и выбрать пункт «Добавить коллаб».
- 6.1.2 Коллаб состоит из топиков. Для добавления топика необходимо нажать на коллаб в дереве объектов правой кнопкой мыши и выбрать пункт «Добавить топик».
- 6.1.3 Топик структурная единица формата BCF. Топик состоит из текстовой информации, информации о камере, отображаемых объектах и т.д. Полную структуру формата BCF можно изучить по ссылке https://github.com/BuildingSMART/BCF-XML/tree/master/Documentation. Для просмотра и редактирования параметров топика необходимо найти поле «Параметры» в таблице свойств топика и нажать на кнопку «…» поля «Параметры». В открывшемся окне присутствует две вкладки. Во вкладке «Параметры markup» отображается текстовая информация о топике, во вкладке «Параметры viewpoint» отображается визуальная информация топика, такая как параметры камеры, срезы, дополнительные линии, а также скриншот этой визуальной конфигурации. Для применения параметров камеры, заданных в текущем открытом окне 3D, необходимо нажать правой кнопкой мыши на топик в дереве объектов и выбрать пункт «Применить текущие параметры камеры».
- 6.1.4 При двойном клике на топик к текущему 3D окну с моделью IFC применяются параметры камеры из топика, а также отрисовываются дополнительные линии. Для того, чтобы убрать линии, необходимо сделать двойной клик на IFC модель, которая отображена в 3D окне.
- 6.1.5 Для импорта файла BCF необходимо создать коллаб, нажать правой кнопкой мыши на коллаб и выбрать пункт «Импорт BCF». Далее в появившемся окне выбрать файл BCF и нажать «Ок». В случае удачного импорта в коллаб будут созданы топики из файла BCF. В текущий момент времени программа поддерживает файлы BCF с одной темой, в случае нескольких тем будет импортироваться только первая из них.

6.2 Экспорт анимированных моделей

- 6.2.1 Для того, чтобы экспортировать модель IFC с добавленными/измененными видами, необходимо выбрать модель IFC в дереве объектов, нажать правую кнопку мыши, выбрать пункт «Экспортировать в IFC» и в появившемся окне выбрать папку, в которую будет экспортирована модель.
- 6.2.2 Для экспорта расписания необходимо убедиться, что расписание открыто в текущем окне, далее выбрать расписание в дереве объектов, нажать правую кнопку мыши, выбрать пункт «Экспорт в GIF». Начнется покадровый рендеринг и сохранение последовательности кадров. По окончании процесса в блоке дерева «Анимации» будет создан новый объект дерева типа GIFFile, содержащий в себе ссылку на экспортированный GIF файл внутри контейнера проекта. При необходимости сохранения GIF файла на диск необходимо выбрать объект с ним в дереве объектов, нажать на него правой кнопкой мыши, выбрать пункт «Сохранить в файл» и выбрать папку, в которую будет сохранен GIF файл.

6.3 Экспорт моделей в PDF 3D

- 6.3.1 Модели IFC и федерации можно экспортировать в формат PDF 3D. Для экспорта необходимо выбрать нужную модель в дереве объектов, нажать правую кнопку мыши и выбрать пункт «Экспортировать в PDF 3D» или «Экспортировать в PDF 3D с приложениями». В появившемся окне необходимо выбрать папку, в которую будет осуществлен экспорт. После нажатия на OK начнется экспорт, по окончании которого в выбранной папке будет создан файл PDF, содержащий в себе 3D графику с геометрией экспортируемой модели. В PDF файле можно просмотреть дерево объектов, в нем отображаются модели и этажи у моделей.
- 6.3.2 В случае экспорта в PDF 3D с приложениями, в файл PDF во вложения будет также экспортирована модель в формате IFC либо в формате BCF (для федераций).

7. Функции обработки моделей

7.1 Маппинг

- 7.1.1 ВІМ маппинг это операции обработки ІFC и IFC дамп файлов.
- 7.1.2 Обработкой является изменение IFC файлов, их проверка по заданным параметрам, получение заданной информации из файлов и т.д. Параметры задаются в файле шаблона.
- 7.1.3 Режимы обработки данных:
 - 7.1.3.1 Проверка (validation). Проверка модели на наличие или отсутствие в модели заданных типов объектов, наборов свойств, свойств и геометрических представлений. Типы задаются в файле шаблона. Поддержано три режима проверки модели:
 - 7.1.3.1.1 все обязательные (required) типы присутствуют в модели;
 - 7.1.3.1.2 все объекты модели имеют допустимые (valid) типы (в том числе обязательные (required));
 - 7.1.3.1.3 среди объектов нет недопустимых (invalid) типов;
 - 7.1.3.2 Очистка (trimming). Удаление из модели заданных типов объектов, наборов свойств, свойств и геометрических представлений. Типы задаются в файле шаблона. Поддержано два режима очистки модели:
 - 7.1.3.2.1 удаление всех недопустимых типов;
 - 7.1.3.2.2 оставление всех обязательных типов;
 - 7.1.3.2.3 оставление всех допустимых типов (в том числе обязательных).
 - 7.1.3.3 Полнота вывод информации о количестве (проценте) объектов, для которых заданы необходимые параметры по шаблону. Вывод информации:
 - 7.1.3.3.1 В текстовый файл;
 - 7.1.3.3.2 В новый вид IFC модели, который содержит в себе поле с файлом шаблона и поле с режимом отображения объектов (только обязательные, допустимые, недопустимые). При выборе режима объекты, входящие в выбранный режим, остаются в 3д окне, а не входящие объекты становятся прозрачными.
 - 7.1.3.4 Выявление структуры вывод в текстовый файл информации о наборе (дереве) групп в файле IFC.
- 7.1.4 Принципы обработки данных:
- 7.1.5 Модель:
 - 7.1.5.1 Типы объектов операции выполняются над объектами заданных типов;
 - 7.1.5.2 Наборы свойств операции выполняются над заданными наборами для всех объектов заданных типов;
 - 7.1.5.3 Свойства операции выполняются над заданными свойствами во всех наборах для всех объектов заданных типов;
 - 7.1.5.4 Геометрическое представление операции выполняются для всех объектов, в котором присутствует заданный тип геометрического представления;
- 7.1.6 Набор свойств:
 - 7.1.6.1 Операции выполняются для наборов в указанных типах объектов;
- 7.1.7 Свойства:
 - 7.1.7.1 Операции выполняются для свойств в указанных наборах для указанных типов объектов;
- 7.1.8 Представления:
 - 7.1.8.1 Операции выполняются для объектов указанных типов, в которых есть хотя бы одно указанное представление;
- 7.1.9 Файл шаблона маппинга:

- 7.1.9.1 Файл шаблона это json файл, содержащий в себе описание обязательных, допустимых и недопустимых типов объектов, наборов свойств, свойств и геометрических представлений в модели. Эти данные используются в соответствии с выбранным способом обработки файлов. Все блоки файла шаблона являются необязательными, т.к. могут отсутствовать. Параметры можно задавать как точным названием («IfcWall»), так и регулярным выражением («Ifc[WBS].*»).
- 7.1.9.2 Если блок файла шаблона не задан, то любые связанные с ним проверки не выполняются.
- 7.1.9.3 В шаблоне задаются три семейства значений обязательное (required), допустимое (valid) и недопустимое (invalid). Четвертым семейством являются значения, не указанные как обязательные, допустимые или недопустимые «открытое» семейство.
- 7.1.9.4 В каждом семействе могут быть значения, заданные строками и регулярными выражениями. Чтобы использовать строки, необходимо в ключе задавать префикс «s», например, «slfcTypesValid». Чтобы использовать регулярные выражения, необходимо задавать префикс «r», например, «rRequired». Поиск по строкам происходит при полном совпадении строки и имени объекта/типа/свойства. Поиск по регулярным выражениям происходит в соответствии с правилами регулярных выражений.
- 7.1.9.5 Ресурс с описанием возможностей использования регулярных выражений и их синтаксиса: <u>http://proglang.su/java/regular-expressions</u>
- 7.1.9.6 Ресурс для работы с регулярными выражениями онлайн: <u>https://regex101.com/</u>
- 7.1.10 Пример шаблона маппинга с кратким описанием данных:

{	
	// проверки для всего файла
	"Model": {
строки	"sIfcTypeRequired" : ["IfcBeam","IfcRoof",], // required types
регулярки	"rIfcTypeRequired" : ["IfcB.*","IfcR.*",], // required types
строки	"sIfcTypeValid": ["IfcWall", "IfcDoor",], // valid types
Ĩ	"sIfcTypeInvalid": ["IfcWindow",] // invalid types строки
names строки	"SilCPropertySetRequirea" : ["Seti name", …], // requirea set 1
set names ca	"sIfcPropertySetValid": ["set1 name", " set2 name",], // valid
invalid set	"sIfcPropertySetInvalid" ["set1 name", "ArchiCAD.*",] // names строки
property nam	"rIfcPropertyRequired" : ["isExt.*","[w\W].*", …], // required nes регулярки
строки	"sIfcPropertyValid": ["Reference",], // valid property names
	"rIfcPropertyInvalid": ["ArchiCAD.*",] // invalid property names
регулярки	"sIfcRepresentationRequired" : ["IfcExtrudedAreaSolid", …], // re-
quired repre	esentation names строки
resentation	"sIfcRepresentationValid": ["IfcFacetedBrep",], // valid rep- names строки
resentation	"rIfcRepresentationInvalid": ["IfcBoolean.*",] // invalid rep- names регулярки
	} <i>,</i>
	// проверки наборов свойств для отдельных типов
	"Pset": {
	"IfcWall": {

"sRequired" : ["setname string", ...], // required property sets строки "rValid": ["setname reg exp", ...], // valid property sets регулярки "sInvalid": ["setname string", ...] // invalid property sets строки } }, // проверки свойств в наборах для отдельных типов "Property": { "IfcSlab": { "sRequired" : [["set1 string", "property1 string", "property2 string",...], //строки], "sValid": [["set1 string", "property1 string", "property2 stinrg", ...], //строки], "rInvalid": [["set1 reg exp", "property1 reg exp", ...], // регулярки ...] } }, // проверки представлений для отдельных типов "Geom": { "IfcWall": { "sRequired" : ["IfcExtrudedAreaSolid", …], // строки "rValid": ["IfcFaceted.*", ...], // регулярки "rInvalid": ["IfcBoolean.*", ...] // регулярки } } }

7.1.11 Каждый блок шаблона необязателен и может отсутствовать.

7.1.12 Запуск операций маппинга в BIM Studio осуществляется с помощью пункта меню в шапке главного окна.

Проект Данные	BIM Studio Панель отрисовки Справ	ка Настройки [WORK@]
🖽 Параметры і ভ Окна	Конвертировать из файлов Импортировать из IFC дампа Импортировать из BIM дампа	
Документац Федерации	BimMapping	Очистка
Модели Мир		Валидация Полнота
🖂 Расписания 📎 Анимации		Выявление структуры
 Расписания Анимации 		

- 7.1.13
- 7.1.14 После выбора необходимой операции появится окно выбора параметров. Необходимо выбрать все параметры, нажать «ОК». Результат будет в файле результата в выбранной папке, либо в панели состояния в нижней части окна программы.

8. Камеры и локаторы.

- 8.1.1 Локатор условно название фотоснимка, в котором содержатся данные о пространственном расположении камеры при съемке, и, возможно, данные об объекте съемки (расстояние до объекта и т.п.). Локаторы получаются при фотосъемке на устройствах Андроид с помощью приложения ЛокаторКамера
- 8.1.2 Камера устройство, на котором была выполнена съемка.
- 8.1.3 В приложении BimStudio в дереве объектов имеются две ветки Локаторы и Камеры.
- 8.1.4 Локаторы визуализируются в трехмерном пространстве модели, показывается изображение параметров камеры и съемки, на кадр накладывается текстура фотоснимка локатора.

Проект Данные BIMStudio IFC Панель отрисовки Настр

- 8.1.5 Для импорта локаторов и камер в BimStudio необходимо выбрать пункт «Импортировать локатор» в меню «BimStudio» в шапке приложения, и выбрать необходимые файлы локаторов (внимание – в пути к файлам локаторов не должно содержаться русских символов). При импорте в ветке Камеры создается объект Камера, соответствующий устройству, на котором была выполнена съемка (если такой камеры нет в дереве) и объекты-Локаторы, соответствующие выбранным файлам локаторов, в ветке Локаторы.
- 8.1.6 Объект камеры содержит характеристики камеры:
 - 8.1.6.1 Устройство пункт «Dev» из файла локатора
 - 8.1.6.2 Камера пункт «Сат» из файла локатора
 - 8.1.6.3 Угол обзора пункт «VA» из файла локатора
 - 8.1.6.4 Размер изображения пункт «Img» из файла локатора
 - 8.1.6.5 Объект локатора содержит характеристики локатора:
 - 8.1.6.6 Камера ссылка на объект камеры, на которую осуществлялась съемка локатора
 - 8.1.6.7 Порядковый номер пункт «N» из файла локатора
 - 8.1.6.8 Дата пункт «Date» из файла локатора
 - 8.1.6.9 Время пункт «Тіте» из файла локатора
 - 8.1.6.10 Направление съемки пункт «Orient» из файла локатора
 - 8.1.6.11 Местная система координат пункт «MSK» из файла локатора
 - 8.1.6.12 Расстояние до кадра параметр визуализации расстояние от позиции локатора (MSK) до кадра с текстурой фотоснимка
 - 8.1.6.13 Прозрачность параметр визуализации прозрачность текстуры фотоснимка, от 0 (полностью непрозрачная) до 1 (полностью прозрачная)

- 8.1.7 Для визуализации сцены с локаторами необходимо выбрать (дважды кликнуть) на один из локаторов.
- 8.1.8 Автоматически будут найдены все локаторы, которые сделаны на ту же камеру, что и выбранный.
- 8.1.9 Найденные локаторы отобразятся в 3D окне в виде четырехугольных пирамид, кадров и линий визирования.
- 8.1.10 Линии визирования (направление от позиции локатора до центра снимка) будут продлены до пересечения их проекций на плоскости ХҮ. Чем точнее исходные данные локаторов (Orient и MSK), тем кучнее будут сходиться линии визирования. При некорректных данных локаторов возможны некорректные длины линий визирования.
- 8.1.11 Чтобы показать/скрыть локаторы с 3D сцены можно воспользоваться пунктом «Показать» в таблице свойств локатора, а также кликнуть правой клавишей мыши на локатор и выбрать нужный пункт («Показать», «Скрыть», «Показать только этот»)
- 8.1.12 При визуализации локаторов на сцене автоматически создается зелено-красная сетка размером 50х50 с шагом 1х1 в плоскости, параллельной плоскости ХҮ на высоте -1.5 от самой низкой позиции локатора. Для редактирования параметров визуализации сетки необходимо изменить из в таблице свойств 3D окна в пункте «Настройка сетки», для включения/выключения сетки необходимо изменить свойство «Сетка» в таблице свойств 3D окна на «Показать» / «Скрыть»

9. БимДамп

9.1 Общая информация

9.1.1 В текущей версии программы поддержаны параметрические модели, шкалы и палитры, штриховки.

9.2 Параметрические модели:

9.2.1 В дереве объектов есть ветка «Параметры BimDump», в которую в процессе импорта файлов BimDump-a с параметрическими моделями добавляются объекты, содержащие необходимую информацию для работы параметрических моделей, такую как статические таблицы кистей, перьев, точек и т.д., параметрические таблицы – дискретные и переменные, структуру описания параметров модели и т.д.

шкалы

🖬 Параметры BimDump

- 9.2.2 При открытии параметрической модели в нижней части окна с визуализацией модели появляются интерфейсные элементы для управления параметрами модели выпадающие списки для дискретных параметров и слайдеры для переменных параметров. При изменении параметров изменяется внешний вид модели в окне.
- 9.2.3 Дискретный параметр 1.

9.2.4

9.2.5 Дикретный параметр 2

- 9.2.7 Параметрические модели с переменными параметрами можно экспортировать в файлы GIF.
- 9.2.8 Для этого необходимо в контекстном меню параметрической модели выбрать пункт «Сохранить как GIF».

	Показать					
Анимал	Сделать главной моделью					
🖸 Трансс	Открыть в окне координации					
Фото Фото У Коллаб	Опубликовать	,				
Локат	Экспорт	,				
🛅 Камері	Сохранить как GIF					
Штрих	Трансформация 3	•				
🛄 Шкаль	Экспортировать в растровое изображение					
🖬 Парам	Парам					
Струк	Vapauts					
Динамическ	ие таблицы с дискретными па					
Динамическ	Динамические таблицы с переменными па					

9.2.9 После этого в появившемся диалоговом окне настроить параметры экспорта и нажать «ОК».

вти CD5G\$Mp3D: Параметры сохранения в GIF	×
Папка для сохранения: C:\SITIS	Обзор
Количество повторов: 0	
Задержка между кадрами, мс: 0	
Ширина: 1280	
Высота: 720	
Изменяемый параметр: [Time]	
ОК Отмена	

9.3 Штриховки

9.3.1 В дереве объектов есть ветка «Штриховки», в которую в процессе импорта файлов BimDumpа добавляются штриховки. Также штр<u>иховки можно</u> добавить вручную при помощи кон-

	штриховки		١.
текстного меню «Добавить штриховку».	🔯 Палитры	Добавить штриховку	

- 9.3.2 Штриховки можно редактировать.
- 9.3.3 При помощи контекстного меню «Редактировать параметры групп штрихов».

Штриховки	
🔶 Штриховка	I
🖾 Палитры	Редактировать параметры групп штрихо
💶 Шкалы 📰 Параметры I	Удалить

- 9.3.4 После нажатия открывается диалоговое окно редактирования с визуализацией текущего вида штриховки.
- 9.3.5

9.3.7

9.3.6 При открытии модели, которая является результатом трансформации другой модели, полигоны, отображающие секущую плоскость, закрашиваются штриховкой, если штриховка заданана.

9.4 Шкалы и палитры

9.4.1 В дереве объектов есть ветки «Шкалы» и «Палитры», в которые в процессе импорта файлов BimDump-а добавляются шкалы и палитры. Также шкалы и палитры можно добавить вручную при помощи контекстного меню «Добавить шкалу» и «Добавить палитру».

9.4.2 Можно редактировать функцию раскраски палитры

Палитры Палитры Палитры	Добавить палитру	Шкалы Паранор	Добавить шкалу
<u>Палитра</u> Шкалы	Редактировать функцию	раскраски	
📰 Параметр	Удалить		

- 9.4.3 При помощи контекстного меню «Редактировать функцию раскраски».
- 9.4.4 После нажатия открывается диалоговое окно редактирования функции раскраски палитры.

вім _1: Редактирование функции раскраски			
Nº	Значение вели	Цвет	
1	100.0		
2	125.0		
3	150.0		
4	175.0		
5	200.0		
6			
7			
8			
9			
10			
ОК Отмена			

9.4.5 При открытии модели, которая связана с набором Ms3D, каждый объект из набора окрашивается в цвет, вычисленный по заданному значению этого объекта в наборе и заданной шкале, шкала, в свою очередь, берет данные из связанной с ней палитры. В окне визуализации модели появляется визуализация шкалы, отображающая соответствие значений и цветов.

3720-01-010-РП-1 СИТИС:БимСтудия-Пилот 0.10 руководство пользователя, редакция 1 от 19.10.2020

10. Хранилища

10.1 Работа с хранилищами

- 10.1.1 БимСервер спецификация хранения БимДампов на файловых серверах для организации сред общих данных, и набор серверного и клиентского ПО для доступа и обработки таких данных в.
- 10.1.2 В приложении BimStudio в дереве объектов имеется ветка Хранилища. В этой ветке находятся объекты с параметрами самих хранилищ.
- 10.1.3 Для добавления нового хранилища необходимо выбрать пункт «Добавить хранилище» в контекстном меню узла «Хранилища». В результате этого появится объект «Хранилище».

Казаранилища ∢ Ш	Добавить хранилище
Свойство	Очистить

- 10.1.4 Далее необходимо настроить параметры нового хранилища:
 - 10.1.4.1 Задать имя хранилища (для отображения в дереве объектов)
 - 10.1.4.2 Комментарий (при необходимости)
 - 10.1.4.3 Билет доступа к хранилищу
 - 10.1.4.4 Адрес папки экспорта

10.1.5 Билет допуска к хранилищу (storage ticket)

- 10.1.6 Билет допуска к хранилищу текстовый файл ТХТ с структурой данных json, который содержит данные для доступа к FTP серверам и облачным хранилищам с данными.
- 10.1.7 Струткура содержит данные
 - 10.1.7.1 Идентфицирующий объект bimstorageticket : версия спецификации
 - 10.1.7.2 Тип (ftp, cloud, disk и т.п.)
 - 10.1.7.3 ІР-адрес
 - 10.1.7.4 Путь путь к папке хранилища
 - 10.1.7.5 логин
 - 10.1.7.6 тип пароля целое число, указывающее алгоритм шифрования. 0 пароль не зашифрования.
 - 10.1.7.7 Зашифрованный пароль
 - 10.1.7.8 Ключ пароля (ключ для рашифровки. Как правило 4 или 5 -значное десятичное число, для простаты запоминания пользователем)

10.1.8 Контейнер хранилища

Контейнер хранилища - zip-архив, в котором содержится папка _data_ с папками и с файлами моделей и папка _catalog_ с каталогом контейнера и служебной информацией о файлах моделей, в соответствии с структурой данных для хранилища

10.1.9 Контейнерный набор

Контейнерный набор - папка с подпапками _data_ и _catalog_ с файлами моделей и служебными файлами, которая при архивировании будет являться контейнером хранилища.

10.1.10 Структура содержания хранилища

1. Хранилище

- 1.1. Разделы обязательный элемент. В непустом хранилище должен быть хотя бы один раздел
 - 1.1.1.1. Папки и модели
 - 1.1.1.1.1. Папки и модели
 - 1.1.1.1.1.1....

Спецификация хранения данных

- Хранилище папка _storage, в которой содержатся служебные папки и файлы и папки одного или нескольких разделов. Папка может находиться в корневой папке (по умолчанию) файлового ресурса или в вложенной папке ресурса
- 2. Служебные папки и файлы хранилища
- 3. Раздел папка с служебными папками, папками и файлами.
- Поиск взаимосвязей при обработке данных в хранилище выполняется в пределах одного раздела хранилища по данным в служебном файле _file_id.txt раздела, содержащего файл для которого анализируются взаимосвязи
- 5. В папках раздела размещаются
 - 5.1. Файлы моделей и данных
 - 5.2. Вложенные папки с моделями и данными
 - 5.3. Папка ".ico" с иконками моделей.
 - 5.3.1. Иконки к файлам моделей файлы .jpg или .png. Имя файла иконки соответствует полному имени файла соответствующей модели или папки с моделями
 - 5.4. Папка ".info" с файлами параметров моделей
 - 5.4.1.Файл ".json" с информацией о моделях в папке. Имя файла иконки соответствует полному имени файла соответствующей модели
- 6. Папка .id, в которой размещаются служебные файлы каталога раздела хранилища
 - 6.1. _file_id.txt файл с json структурой содержащей данные о файлах в разделе
 - 6.1.1. Номер версии файла (порядковый номер создания и изменения)
 - 6.1.2.Дата время создания файла
 - 6.1.3. Массив массивов с данными LKID файла/модели, LKID проекта (группы файлов), номер экспорта проекта, путь к файлу в хранилище. Для одного LKID и Организация массива должна быть выполнена для наиболее простой и быстрой операции поиска в javaScript в браузере.
 - 6.2. _file_id.zip архив _file_id.txt
 - 6.3. В каталоге могут содержаться другие файлы, необходимые для обеспечения быстрого поиска и обработки данных в хранилище
- 7. .log папка с журналом файлов _file_id.txt . К именам файлов добавляется номер и дата время создания файла. Например _file_id_1234_20200526_121159.txt , и журналами других файлов в папке .catalog
- 8. В подпапках раздела размещаются
 - 8.1. Файлы моделей и данных
 - 8.2. Вложенные папки с моделями и данными
 - 8.3. Папка ".ico" с иконками моделей.
 - 8.4. Папка ".info" с файлами параметров моделей и данных

11. Просмотр с конвертацией

11.1 Описание работы

- 11.1.1 Папка с конвертерами должна находится в корневой папке программы СИТИС:БмСтудия папка "converters".
- 11.1.2 Для каждого конвертера необходима своя папка, имя папки произвольное. В каждой папке конвертера должны лежать:
 - 11.1.2.1 файл «имя_файла.json» с конфигурацией

11.1.2.2

11.1.2.3 файл «имя_файла2.bat» с параметрами запуска программы конвертации.

C:\SVN\JAVA\BIMStudioStandalone\converters\П	иротек - БимДамп\п	un.bat - No	x
<u>Ф</u> айл <u>П</u> равка По <u>и</u> ск <u>В</u> ид <u>К</u> одировки <u>С</u> инт	аксисы <u>О</u> пции I	Инстр <u>у</u> менты <u>М</u> акро	сы
<u>З</u> апуск Плаги <u>н</u> ы Вкл <u>ад</u> ки <u>?</u>			Х
[] 	🛗 🏂 👒 🤫	🖪 🖼 🚍 🏾 🚺	• *
😑 configuration.json 🛛 📄 run.bat 🛛 📄 log.bt 🗵			
1 "C:\SITIS\Programs\BimDump-Pirotec	h\BimDumpPirote	ch.exe" %1 %2 -c	
 engt Ln : 1 Col : 66 Sel : 0 0	Windows (CR LF)	OEM 866	INS

11.1.2.4 🖵

11.1.3 Пункт меню «Конвертеры» автоматически генерируется на основании файлов конфигураций конвертеров. Чтобы просмотреть необходимо нажать «Конвертеры» и выбрать созданный конвертер, например:

- 11.1.4
- 11.1.5 Далее можно выбрать файлы конвертации:
- 11.1.6

BIM Pirotech -> B	imDump	×
Исходный файл:	C: \Users \Alex \Desktop \Pirotech \2smooth.spdz	Обзор
Выходной файл:	C:\Users\Alex\Desktop\2smooth.bimj3	Обзор
	ОК Отмена	
7		

11.1.8 Пример конвертации и инпорта из программы СИТИС:Пиротек

11.1.10 Ключи:

- 11.1.10.1-сі="путь к исходному файлу"
- 11.1.10.2-со="путь к выходному файлу".

12. Примеры

- 12.1.1 В составе дистрибутива программы включен набор примеров моделей и их обработки
- 12.1.2 Примеры можно открыть с помощью пункта главного меню «Проект» «Открыть примеры».

13. Системные требования

- 13.1.1 OC Windows 7/10 (x64)
- 13.1.2 Свободного пространства на диске не менее 130 МБ.
- 13.1.3 Java 8 (x64)
- 13.1.4 установленная Графическая Библиотека из Общих Компонентов СИТИС.